
Plan to transition EMC developers to
CCPP
Draft: July 5, 2018. Updated multiple times; last time on Sep 30.

Table of Contents
Location and use of physics for FV3GFS

Transition timeline

Criteria for transition to master

Criteria for transitioning CCPP to be the only way to call physics in the eMC FV3

Criteria for transition of CCPP to operations

Code Management

Training and transition to scientists

Known software issues

Location and use of physics for FV3GFS
The location and use of physics will change as the code evolves toward full CCPP integration
(Table 1). There will be a transition period during which all CCPP code is being integrated as
IFDEFs. When compilation option CCPP=N is chosen, the original unaltered code is used.
When compilation option CCPP=Y is chosen the CCPP is used either in full implementation
mode (HYBRID=N) or using a dual capability to run both original and CCPP-compliant physics
(HYBRID=Y, which is currently the default).

 Now After CCPP
final
integration

During the transition

 CCPP
capability
CCPP=Y
HYBRID=N

CCPP=N CCPP
hybrid
CCPP=Y
HYBRID=Y

Location of Subdirectory ccpp-physics No physics is Nothing No physics is

physics of FV3
(gfsphysics)

repository removed
from
gfsphysics,
but
CCPP-compli
ant schemes
used come
from CCPP
repository

changes,
same as now

removed
from
gfsphysics,
but
CCPP-compli
ant schemes
used come
from CCPP
repository

Way to
choose
physics

Namelist Suite
Definition File
and Namelist

Suite
Definition File
and Namelist

Nothing
changes,
same as now

Suite
Definition File
and Namelist

Way to
invoke
physics

GFS_physics
_driver,
GFS_radiatio
n_driver and
GFDL mp
fast physics

Suite
Definition File

Suite
Definition File

Nothing
changes,
same as now

GFS_physics
_driver with
dual
capability
(ability to run
both
CCPP-compli
ant and
original
parameteriza
tions in the
same run).
Radiation
called directly
through
CCPP
Framework
(GFS_radiati
on_driver not
used)

The full use of CCPP described in Table 1 (CCPP=Y, HYBRID=N) allows the choice of runtime
parameterizations through the SDF, and is termed the FLEXIBILITY mode of the CCPP.
Additionally, a PERFORMANCE model of the CCPP is available through the options STATIC=Y
SUITE=xyz.xml. In the PERFORMANCE mode, the SDF must be determined at compile time
and a static physics library is used, allowing the code to run faster.

Source code. There are currently two locations for physical parameterizations: the
CCPP-Physics repository contains CCPP-compliant parameterizations, while subdirectory
gfsphysics of the FV3 repository contains non-CCPP-compliant parameterizations. Once the

transition is complete, the only location for parameterizations will be the CCPP-Physics
repository.

 Currently parameterizations from one or the other source code locations are used depending
on the type of build. When CCPP=Y is used, all CCPP-compliant schemes come from the
CCPP-Physics repository; if HYBRID=Y is used, any non-CCPP-compliant schemes come from
the FV3 repository. If CCPP=N is used, all schemes come from the FV3 repository.

 During the transition period, parameterizations will exist in both locations and GMTB will keep
the ones in the ccpp-physics repository updated when updates happen in gfsphysics.

Physics selection. Physics is currently selected using a namelist. Once the transition to CCPP
is completed, physics selection will happen through the CCPP Suite Definition File but
consistency checks will be needed with namelist settings. When the CCPP is used in
FLEXIBILITY mode, parameterizations can be chosen at runtime. When the CCPP is sed in
PERFORMANCE mode, parameterizations must be chosen at compilation time.

Calling Physics. Physics is currently invoked using drivers (GFS_physics_driver
GFS_radiation_driver) or, in the case of GFDL microphysics fast physics, directly through
subroutine calls in the Lagrangian loop within the dynamical core. Once the transition to CCPP
is completed, no drivers will be necessary. All physics will be invoked through calls to the CCPP
framework within the host application cap. During the transition period a capability to run both
CCPP-compliant and original parameterizations will be maintained. For this purpose, the
GFS_physics_driver is being modified to support this dual capability. Since all radiation
parameterizations in FV3 are CCPP compliant (short- and long-wave RRTMG), this dual
capability is not necessary for radiation and the GFS_radiation_driver can be eliminated during
the transition phase.

Transition timeline
● May 2018: portability changes submitted and accepted to master of FV3, NEMS, and

NEMSFV3GFS repositories
● June 2018: integration of CCPP framework submitted and review process started
● August 2018:

○ GFS_physics_driver dual capability to be submitted for use with updated
ccpp-framework and ccpp-physics codes.

○ ccpp-physics repository updated with parameterizations of the FV3GFS default
suite as of July 2018

○ Need to allow time for review by EMC and acceptance into trunk. GMTB will
periodically update branch to stay up to date with master

● September 2018 (by EMC and GMTB)
○ Ability to run GFS suite with CCPP in EMC master

● September 2018 (by GMTB)
○ ccpp-physics repository updated with parameterizations of the CPT/EMC suite

(SHOC, CS, MG, Ozone, H2O). October 2018 (by GMTB)
○ In person training provided to EMC staff at NCWCP

● Fall 2018 (by GSD)
○ ccpp-physics repository updated with parameterizations of the RAP/HRRR suite

(GF, Thompson, RUC LSM, MYNN surface and PBL)
● Fall 2018

○ CCPP used in parallels for physics tests toward FV3GFS v2
● December 2018 (by PSD)

○ ccpp-physics repository updated with RRTMGP
● February 2019

○ Unified GWD in CCPP (by GMTB)
● January 2021

○ Operational Implementation of CCPP as part of FV3GFS v2

Criteria for transition to master
● Bit-for-bit reproducibility

○ GMTB has obtained bit-for-bit reproducibility of runs with and without CCPP
when using the CCPP=Y (for all tests in rt_ccpp_hybrid.conf), as well as
CCPP=N (for all tests in rt.conf) and “CCPP=Y HYBRID=N” (for all tests in
rt_ccpp_standalone.conf). Reproducibility tests are performed at REPRO=Y in
the config file. Differences between REPRO and PROD: REPRO is missing the
following optimization flags (all others equal):

■ -no-prec-div -no-prec-sqrt
■ -xCORE-AVX2
■ -qopt-prefetch=3 (removing this may not be required)

● Pass all regression tests
○ All tests pass

● Code is stable (no crashes)
○ No crashed occurred

● Timing and memory statistics available
● Evaluation impact of changes in compiler version and flags.

○ See here preliminary results
○ Test setup:

■ For runs with CCPP, use static build
■ Theia
■ C768 resolution
■ No DA - free forecast
■ 16-day forecast

https://drive.google.com/file/d/1V4mP-1pBdMAD8N5bO5k8lF-WcXVpDy2-/view?usp=sharing
https://docs.google.com/document/d/12_cJyraRTr_w3YLf5mItZor_hsK0gdNI_rN7sUv-8k0/edit#heading=h.fanoad8ggm6x

■ No CCPP: Intel 18, Intel 15
○ Test 1: Impact of compiler version for runs without CCPP

■ CCPP=N
■ Intel 18 versus Intel 15

○ Test 2: Impact of removing 3 compiler flags
■ -no-prec-div -no-prec-sqrt
■ -xCORE-AVX2
■ -qopt-prefetch=3

Criteria for transitioning CCPP to be the only way to
call physics in the EMC FV3

● All necessary physical parameterizations that are in EMC’s master today need to be
CCPP-compliant.

○ Example: WSM6, RAS, several versions of the moninX PBL schemes, and an
older version of Thompson are currently in FV3 and GFS_physics_driver. It
appears there is some development in these items. If needed, they must be
moved to CCPP.

○ Need plan for addition of new schemes for FV3GFS. For example, OU/CAPS
would like to add some physics for the regional application. Recommendation is
that any new parameterization to be introduced needs to be CCPP-compliant. If it
needs to be run with non-CCPP-compliant scheme, use the dual capability
implementation.

● Identify and prioritize a list of tests that need to pass and plan the work accordingly:
● Run with fv3gfs workflow (free and cycled forecasts)

○ Involves running the ensemble DA configuration
● Coupled model runs: must be able to build and use CCPP for relevant

ocean-ice-atmosphere runs. This involves creating one or more CompSet(s).
● Ensemble runs?? GEFS???
● NGAQ
● Flags and options (ldiag3d, lgocart, …?)
● What else?

Criteria for transition of CCPP to operations
● Fully optimized performance timing and memory; similar or better performance than

non-CCPP code.
● Performance tests of static versus dynamic loading of CCPP library

Code Management
The ccpp-physics and ccpp-framework are public repositories under the NCAR account in
GitHub. They are included as submodules in the NEMSFV3GFS repository (could be
transitioned to the manage_externals if this tool is adopted by NOAA for UFS management).
The Governance for these codes is still under development and in transition from being held by
GMTB to being held by a larger group. Therefore, the procedures listed will likely be rapidly
evolving in the next few months. These are also contingent on a Hurricane Supplemental
proposal (under review) for the development of unit, function, and regression tests for the
ccpp-framework, along with a continuous integration strategy.

In order to submit an innovation, whether it is a bug fix, enhancement to an existing scheme, or
a new feature, developers should create their own copy (github fork) of the repository, create a
branch, add their innovation to the branch, make sure their branch is up to date with the master
branch in the NCAR account, and submit a request to commit the code to master (pull request).
All developers will receive notice of the PR and can comment. An approval by the “code
owners” of the repository is necessary before a PR can be merged to the NCAR master branch
(code owners are specified in a file named CODEOWNERS at the top level of the repository).
Current code owners are from NCAR and NOAA GMTB, but this can be expanded in the future.
Issue tracking is enabled in both the ccpp-physics and ccpp-framework repositories. Support
can be requested by emailing gmtb-help@ucar.edu.

Technical approval of PRs depends on successfully passing the NEMSFV3GFS regression tests
(RTs) on Theia. Regression tests have been developed for the CCPP and will be integrated to
the default NEMSFV3GFS RT. The CCPP-Physics change Control Board (currently being
established) will determine which parameterizations will be included in the supported public
release.

Both ccpp-physics and ccpp-framework are community codes that can be used by a variety of
modeling systems and institutions, including NOAA’s FV3-based Unified Forecast System (UFS)
and GMTB’s single column model. Collaborations are being started to use the ccpp-framework
in NCAR models (WRF, CESM, MPAS). This requires testing involving multiple models, but it is
also important to recognize that not all developers will be able to run all tests (e.g., NOAA folks
are not expected to test ccpp innovations in MPAS). A collaborative testing framework will be
devised as soon as the governance is approved to include additional groups.

Training and transition to scientists
We recommend that all developers be trained in Git and GitHub development tools before
receiving training specific about the CCPP code management. There are many online free
resources for that.

mailto:gmtb-help@ucar.edu

Initially, EMC staff can compile the NEMSFV3GFS code with the option CCPP=N, which is the
default. In this way, the code will not be affected by CCPP since all CCPP code is isolated
through the use of preprocessing directives (that is, the CCPP code is IFDEFed out). As the
transition proceeds, staff can compile with CCPP=Y, to evoke the CCPP-compliant
parameterizations through the CCPP framework.

Starting in October, GMTB staff can provide training to EMC staff through any prefered method
(GoToMeeting with demo or in person). Topics for training can include CCPP technical overview,
overview of host model cap, how to make a parameterization CCPP-compliant, features and
use of the ccpp_prebuild.py script, and CCPP code management and testing.

Known software issues
● It is not possible to check out a code from Github.com on Dell and Cray WCOSS

machines. Apparently this is due to outdated versions of git and/or SSL. Jun asked
wcoss system support to resolve this. Until then, the solution is to use WCOSS IBM
machines (Tide and Gyre) to access GitHub. Since all WCOSS filesystems are
cross-mounted, scientists can develop software on WCOSS Dell & Cray by running their
git commands on Tide/Gyre. The MOM6 and ADCIRC developers are already used to
this workaround.

● CCPP is untested on wcoss. Mitigation: it would be good for CCPP developers to have
access to wcoss in order to test CCPP.

● NEMSFV3GFS regression test on Theia uses Intel v15, CCPP requires Intel >= 17.
Mitigation: upgrade NEMSFV3GFS regression test to use more current compiler version
(ongoing work by Jun Wang).

● CCPP will not run on Jet due to old software stack. Mitigation: Need Intel 17+ installed
on Jet.

● Three changes are needed in NCEP Libraries, as per VLab Redmine tickets:
○ 49011: Need -fPIC in compilations so NCEP Libs can be linked against dynamic

libraries (pending since April 2018 and recently assigned to Hang Lei)
○ 50320: Compile NCEP libraries with OpenMP flag on system that (can) use

OpenMP. Code changes also required (pending since June 2018)
○ 50321: Code changes needed for portability (pending since May 2018)
○ Mitigation: link to prebuilt libraries that use necessary compiler options

● FMS in GFDL repository lacks certain changes required to run FV3+CCPP in all
currently supported platforms. Mitigations: Submit pull requests with necessary change
to the FMS GFDL repository; or use a EMC clone of FMS with needed portability
changes until UFS-SC provides guidelines of which platforms should be supported and
corresponding repository structure is put in place.

	Plan to transition EMC developers to CCPP
	Location and use of physics for FV3GFS
	Transition timeline
	Criteria for transition to master
	Criteria for transitioning CCPP to be the only way to call physics in the EMC FV3
	Criteria for transition of CCPP to operations
	Code Management
	Training and transition to scientists
	Known software issues

