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Designing Fully Non-parametric State and
Parameter Estimation Methods for the UFS
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Example application

The Unified Forecast System (UFS): community-based
coupled models for “Earth system” prediction at NOAA.

NOAA Hurricane Analysis and Forecast System

06 UTC 18-Aug-2020
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Operational starting
this hurricane season.

(Left) simulated
visible imagery from
model “analyses”
produced during data
assimilation.

Video courtesy of
Kenta Kurosawa



Bayesian filtering problem

The goal is to estimate a model state’s pdf conditioned on
observations.

p(Xt|Yo:e) p(Xt+1Yo:t)
-------- >
X
X; and y; are given by:
Xer1 = M(x¢) + 1,

Yt = H(Xt)‘|‘€t-



Ensemble data assimilation (DA)

Draw x{ for n =1,2, ..., N, from p(x;|yo.¢)-

P(Xt|YO:t)

X7, 1 = M(x]) + n{ are samples from forecast density.



Joint state-parameter estimate

Draw x7,0" for n=1,2, ..., N,, from p(x;, O]yo.;).

p(X¢|Yo:t) p(0|yo:t)

X7, = M(x{;0") 4+ n; are samples from forecast density.



DA with a non-parametric prior

Particle filters (PFs) use ensemble members (“particles”) to
approximate prior (forecast) distributions for using Bayes’ rule.



DA with a non-parametric prior

Particle filters (PFs) use ensemble members (“particles”) to
approximate prior (forecast) distributions for using Bayes’ rule.

For state estimation

P(Xt|YO:t) X P(Yt xt)p(xt|y0:t—1)7
1 N

~ plyelx) 5 Y 0(x — X)),

€ n=1

where §(x — x7) is a Dirac delta function; it returns a zero
everywhere except for where x = x!.



DA with a non-parametric prior

Particle filters (PFs) use ensemble members (“particles”) to
approximate prior (forecast) distributions for using Bayes’ rule.

In the context of DA schemes currently used for NWP:

m (Left) EnKFs use a sample estimate of mean and covariance
and fit a Gaussian prior density.

m (Right) PFs use a sum of Dirac delta functions—to form a
“non-parametric” prior density.

1 1

Prior samples Prior samples



DA with a non-parametric prior

Particle filters (PFs) use ensemble members (“particles”) to
approximate prior (forecast) distributions for using Bayes’ rule.

m Even for nonlinear M(x) and H(x), and non-Gaussian errors
PFs converge to the Bayesian solution as

I. ensemble sizes increase.
ii. model and observation errors are accurately described.

m Like EnKFs, approximations are needed to cope with “curse of
dimensionality”"—through localization /inflation /regularization

(Poterjoy 2016; Poterjoy et al. 2019; Poterjoy 2022ab).



Data assimilation with a “localized” PF
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00 UTC Aug. 15 2020

250-mb relative vorticity analyses from the Hurricane Analysis
and Forecasting System (HAFS).



DA representation of tropical cyclones

EnKF PF «10

850-mb ¢ during Rl of Hurricanes Marco and Laura (2020).



Gaussian DA-induced bias in KE spectrum

Average zonal Kinetic energy spectrum for single members:
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NWP application: HAFS

HAFS, and other models, rely on ensemble-variational
(“EnVar") data assimilation.

Motivation:

m EnVar is chosen for practical reasons; e.g., use of a
high-resolution deterministic “control.”

m EnKF typically updates ensemble—short-term forecast from
ensemble provides background error covariance for EnVar (in
prototype versions of HAFS).

m Posterior EnKF members are re-centered on EnVar analysis.

10



NWP application: HAFS

DA comparisons:
m "EnKF-Var” «+ HAFS ensemble updated with EnKF and Var
m ‘PF-Var" «+ HAFS ensemble updated with LPF and Var

In both experiments, role of EnKF or LPF is to update 40
HAFS ensemble members about a variational analysis.

Verification:
m 10-member forecasts generated every 6 h for 2 weeks
m Storm features verified using NHC Best Track data

m Synoptic scale features verified using ERAS

11



Verification (2 weeks of forecasts)

Track and intensity RMSEs for Laura Domain-average RMSEs
and Marco (2020) from ERAS
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m LPF soon to be applied for hourly-updated GFS (Slivinski et
al. 2022) (NOAA/WPO Award: #NA230AR4590379).

Forecast Lead Time (hr) 0.8
(Cases) 0.7
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New direction: non-parametric likelihoods

Full potential of LPF still yet to be explored:
P(Xt|YO:t) X P(Yt Xt)P(Xt‘YO:t—l)a

~ plyelx) 5 Y 0(x — X)),
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New direction: non-parametric likelihoods

Full potential of LPF still yet to be explored:

P(Xt|YO:t) X P(Yt Xt)P(Xt‘YO:t—l)a

~ p(y: Xt)ﬁ Z 0(x — x7),
€ n=1
Ne
x Y pyelx7)o(x — x7)
n=1

Large freedom exists in how we specify p(y:|x}).
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Current methodology

Revisiting present choices for p(y;|x7):

Assume y, = H(x!®") + €,, and apply assumptions for

distribution of e;.
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Current methodology

Revisiting present choices for p(y;|x7):

Assume y, = H(x!™®") + €,, and apply assumptions for
distribution of e;.

n

For € = y: — H(x}),
p(yelxi) ~ N(€f;0,R;).
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Current methodology

Revisiting present choices for p(y;|x7):

Assume y, = H(x!™t") + €,, and apply assumptions for
distribution of e;.

For €] =y; — H(x]),
p(yelxi) ~ N(€f;0,R;).

Two approximations:
The distribution of € is independent of x;.

The distribution of € is modeled as a Gaussian.
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Motivating UFS application

Prototype 6-h coupled ocean/sea ice ensemble DA over
Antarctic using MOMG6 /CICE®:

Prior mean Increments and innovations

00 UTC 15-May-2019 00 UTC 15-May-2019
N | .
X - A ,
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Motivating example

0< H(x%) <1

0.18 | — Histogram |
- Prescribed Gaussian

0.06
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0.02 r

0 . .
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

y — H(x*)

Histogram of y — H(x?) for SSMIS sea ice concentration
across all measurements.
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Motivating example

0< H(x%) <N0.

T l T
0.18 | — Histogram l
- Prescribed Gaussian |

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
y — H(x*)

Histograms of y — H(x?) for SSMIS sea ice concentration,
stratified by H(x?).
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ldealized application

Assimilating obs with non-Gaussian, state-dependent errors

m Model Ill of Lorenz (2005) on
periodic domain

m Model configuration supports
chaotic behavior

m Characterized by N, = 480
variables on periodic domain

m Data Assimilation: iterative local
particle filter (Poterjoy 2022,
QJRMS; Poterjoy 2022, MWR)

17



ldealized application

Assimilating obs with non-Gaussian, state-dependent errors

m Observations: directly measure
every 8™ variable at At = 0.05

myi=xi+efori=12,...,N,

xji <0
0.3 no " x>0
\) X 1
1! (/
1
~~ ] [
><02 : ] 1 !
w i v ! “
= oy
01 i I' “’ \
’ A '
¢, .7 \\ Mo
O-_-=:-—’— . T my

17



A data-driven approach

Forming non-parametric estimates for p(y:|x}):

Strategy 1. Form a kernel representation of distributions for €
given X.

18



A data-driven approach

Forming non-parametric estimates for p(y:|x}):

Strategy 1. Form a kernel representation of distributions for €
given X.

Strategy 2. Form a kernel representation of distributions for y
given X.

m More general
m Larger training sample needed

18



A data-driven approach

Forming non-parametric estimates for p(y:|x}):

1. Adopt feature space representation of € (or y) and x from
data using nonlinear manifold learning method (diffusion

maps; Coifman and Lafon 2006; Berry and Harlim 2016).

Model (Lorenz 1963) 2-D representation

0.03 ¢

0.02 ¢

0.01 ¢

129,
(=]

-0.01 ¢

-0.02 ¢

-0.03 ¢

-0.02 0 0.02
7191
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A data-driven approach

Forming non-parametric estimates for p(y:|x}):

2. Represent data-driven estimates of p(e€|x) or p(y|x) using

kernel embeddings of conditional distributions (Song et al.
2013; Berry and Harlim 2017).
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A data-driven approach

Forming non-parametric estimates for p(y:|x}):

2. Represent data-driven estimates of p(e|x) or p(y|x) using
kernel embeddings of conditional distributions (Song et al.

2013; Berry and Harlim 2017).

Results in an N x N matrix, A, with elements corresponding
to each p(€;|x;) [or p(yi|x;)] for N pairs of data used during
training.

To use with LPF: the likelihood of a given x{ is taken as the
A, ; that is closest to y; and x7 (by diffusion distance).

19



Lorenz example (training time = 40 cycles)

Posterior RMSEs with non-parametric p(e;|x;)
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Data-driven likelihoods

Estimating p(y:|x7) instead of p(e€;|x}) allows for greater
flexibility.

Another application:

m We observe the “square” of model variables without knowing
this function; i.e., H only selects state variables near obs.

m The distribution for €; is still unknown.

21



Data-driven likelihoods

Estimating p(y:|x7) instead of p(e;|x}) allows for greater
flexibility.

Another application:

m 5 unknown parameters: 0 = [K, b, I, c, F]', control
frequency, amplitude, coupling, forcing for waves:

dZ;
S5 = X Xk + BV, Y+ Y Xl = X = bY; + F,
i=I
)<j — Z f(lv i)Zj—I—ia

i=—1

Y, = Z-X
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Joint state-parameter estimation

Posterior BMSES and estimated likelihoods
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Advantages for parameter estimation

Reminder: goal is to sample from p(x;, @|yo.:) where

P(Xe, Oyor) o< p(Ye|xe, O)p(xe, 0).
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Advantages for parameter estimation

Reminder: goal is to sample from p(x;, @|yo.:) where

P(Xe, Oyor) o< p(Ye|xe, 0)p(xe, 0).
Can (in principle) be done in two steps:
Perform state update; i.e., sample from p(x:|y;).

Perform parameter update; i.e., sample from p(0|x:,y:).
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Advantages for parameter estimation

Reminder: goal is to sample from p(x;, @|yo.;) where

p(xt, 0lyo.r) o< p(ye|xe, O)p(xe, 0).
Can (in principle) be done in two steps:
Perform state update; i.e., sample from p(x:|y;).
Perform parameter update; i.e., sample from p(0|x:,y:).

Estimating likelihoods trained on subsets of variables in x; is
advantageous, even if observations are direct point estimates
of scalar state variables in x;.
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Advantages for parameter estimation

Likelihoods only consider point at observation location
40
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Summary

Non-Gaussian DA is now feasible for high-dimensional
applications, such as weather prediction.

Early results using the Poterjoy (2022) “iterative” local PF are
encouraging, but the full benefits still need to be explored.

Maturity of non-Gaussian DA encourages the use of new

research focusing on likelihoods used for state and parameter
estimation.

N gt e
COOPERATIVE INSTITUTE FOR & e
SATELLITE EARTH SYSTEM STUDIES S

25



References

Berry, T. and J. Harlim, 2017: Correcting biased observation model error in data
assimilation. Mon. Wea. Rev. 145, 2833 — 2853.

Coifman, R., and S. Lafon, 2006: Diffusion maps .Appl. Comput. Harmonic Anal., 21,
5 — 30.

Kurosawa, K., and Poterjoy, J., 2021: Data assimilation challenges posed by nonlinear
operators: A comparative study of ensemble and variational filters and smoothers,

Mon. Wea. Rev. 149, 2369 — 2389.

Kurosawa, K. and J. Poterjoy, 2023: A statistical hypothesis testing strategy for
adaptively blending particle filters and ensemble Kalman filters for data assimilation.
Mon. Wea. Rev., 151, 105 — 125.

McCurry, J., J. Poterjoy, K. Knopfmeier, and L. Wicker, 2023: An Evaluation of
Non-Gaussian Data Assimilation Methods in Moist Convective Regimes. Mon. Wea.
Rev., 151, Provisionally accepted.

Poterjoy, J. 2022: Implications of multivariate non-Gaussian data assimilation for
multi-scale weather prediction. Mon. Wea. Rev. 150, 1475 — 1493.

Poterjoy, J., 2022: Regularization and tempering for a moment-matching localized
particle filter. Q. J. Roy. Meteor. Soc., Published online 31 May 2022.

Song, K. Fukumizu, and A. Gretton, 2013: Kernel embeddings of conditional
distributions: A unified kernel framework for non-parametric inference in graphical

models. |[EEE Signal Process. Mag., 30, 98 — 111. o6



Data-driven likelihoods

Constructing A:
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Data-driven likelihoods

Constructing A:

I. Collect training data

m {z}N_,, where z, = H (%) is a randomly drawn
obs-space posterior member (index m) valid at time of
observation
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Data-driven likelihoods

Constructing A:

I. Collect training data

m {z}N_,, where z, = H(%,,) is a randomly drawn
obs-space posterior member (index m) valid at time of
observation

Aside: Each z, serves as a proxy for the portion of true state

that impacts measurements. H() does not need to be a
traditional measurement operator.
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Data-driven likelihoods

Constructing A:

I. Collect training data

m {z}N_,, where z, = H(%,,) is a randomly drawn
obs-space posterior member (index m) valid at time of
observation

O {dk}f(vzl, where dy = yx — z4
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Data-driven likelihoods

Constructing A:

I. Collect training data

m {z}N_,, where z, = H(%,) is a randomly drawn
obs-space posterior member (index m) valid at time of
observation

O {dk}ﬁzl, where dy = yx — z4

Aside: Each dy serves as a proxy for €. Replace {d,}\_, with
{yi}N_, if estimating p(y;i|x;).
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Data-driven likelihoods

Constructing A:

I. Collect training data

m {z}N_,, where z, = H (%) is a randomly drawn
obs-space posterior member (index m) valid at time of
observation

O {dk}ﬁzl, where dy = yx — z4

ii. Form kernel estimate of each p(dy) or p(yx) from data.
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Data-driven likelihoods

Constructing A:

I. Collect training data

m {z}N_,, where z, = H(%,,) is a randomly drawn
obs-space posterior member (index m) valid at time of

observation
O {dk}ﬁzl, where dy = yx — z4

ii. Form kernel estimate of each p(dy) or p(yx) from data.

ii. A then represented using kernel embeddings of conditional
distributions—with basis from diffusion maps in place of
Gaussian RBF (Berry and Harlim 2017).
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Kernel embeddings of conditional distributions

We can represents likelihoods using kernel embeddings:

M
wg = Y @I Tu,
=1

p(di|z;) = Z Pk (di)q(d;)

N
Ck = %Z@(dj)wk(zj)a
=

See Song et al. (2009,2013) T
Cr = & > bi(z)vw(z;).
j=1

where 11 coefficients determine
dependence across d and z.
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Constructing marginals and basis

For g(d), adopt a kernel estimate:

m Variable bandwidth kernel densities provide non-parametric
representation of marginal pdfs.

g(d) = SV, N(dg, B), where By is a covariance.
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Constructing marginals and basis

For g(d), adopt a kernel estimate:

m Variable bandwidth kernel densities provide non-parametric
representation of marginal pdfs.

g(d) = SV, N(dg, By), where By is a covariance.

For basis functions, diffusion maps (Coifman and Lafon 2006)
Is a reasonable choice:

m Manifold learning method for represent data in
lower-dimensional space

m Similar strategy applied by Berry and Harlim (2017)
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Constructing basis functions

Example: Data produced from Lorenz (1963) model

Model data Two-dimensional embeddings

0.03

0.02 ¢

0.01 ¢

-0.01

-0.02 ¢

-0.03 ¢

xz -20 -20 X
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Constructing basis functions

Example: Data produced from Lorenz (1963) model

Observations Two-dimensional embeddings

0.03

0.02 ¢

0.01 ¢

-0.01

-0.02 ¢

-0.03 ¢

-0.02 0 0.02
X, 20 20 X v, 61

7\ Unbiased Gaussian errors
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