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Outline

o Climate science and climate models
@ Weather and climate
@ Radiative balance and dynamical response
@ The "infinite forecast"

e Computational climate science

Model evolution, from the Charney Report to the IPCC
The end of Dennard scaling

What computers are good at: Machine Learning
Learning from models, learning from observations
Learning the physics of fine scales

Q Summary: Climbing Down Charney’s Ladder
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What is climate?

@ Climate is what you expect, weather is what you get
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https://www.noaa.gov/news/new-us-climate-normals-are-here-what-do-they-tell-us-about-climate-change

What is climate?

@ Climate is what you expect, weather is what you get

@ ... but we are going to have to change our expectations! See NOAA new normals, 4
May 2021.
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@ The climate record is based on careful removal of weather “noise” from observations
to see the climate “signal”: the residuals are small compared to the observed
quantities.
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@ The climate record is based on careful removal of weather “noise” from observations
to see the climate “signal”: the residuals are small compared to the observed
quantities.

@ Fluctuations, feedbacks and forcings at all scales: minutes to millennia, microbes to
megacontinents.
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What is climate?

@ Climate is what you expect, weather is what you get

@ ... but we are going to have to change our expectations! See NOAA new normals, 4
May 2021.

@ What you perceive is the difference between the weather and the climate.

@ The climate record is based on careful removal of weather “noise” from observations
to see the climate “signal”: the residuals are small compared to the observed
quantities.

@ Fluctuations, feedbacks and forcings at all scales: minutes to millennia, microbes to
megacontinents.

@ Solving the climate problem implicates any field of science or engineering you can
imagine: fluid mechanics, radiative transfer, chemistry, biology, mathematics,
statistics, algorithms, computing hardware, materials science, ... please join the fun!
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Earth’s Temperature History: observations
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From Wikipedia.
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Earth’s Temperature History: Common Era

Reconstructed Temperature
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@ 1000-year
reconstructions from
tree rings and ice cores.

@ The

and the
may be only
signals

@ The current warming
has a

@ From Wikipedia
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The Great Dying in the Americas
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From Koch et al (2019). Global impact of depopulation in the Americas, c. 1600 CE.
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Eunice Foote discovers the greenhouse effect, 1857
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“An atmosphere of that gas would give to our earth a high temperature”. From climate.gov.

V. Balaji (balaji@princeton.edu)

Charney’s Ladder

14 April 2022

8/50
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Bjerknes and modern weather forecasting

@ V. Bjerknes first formulated the primitive
eguations for the general circulation
(1904).

@ Unable to find a practical way to
integrate them forward in time, he
attempts a graphical calculus on
hand-drawn contour maps

@ Finally resorts to empirical methods
based on libraries of contour maps

Bjerknes develops the foundations of dynamical meteorology but in the end, performs
forecasting using methods “that were neither algorithmic nor based on the laws of
physics”, Calculating the weather, Nebeker (1995).
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The Earth’s radiation budget
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Global atmospheric circulation
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Global oceanic circulation
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Richardson’s failed attempt to compute the general circulation, 1922

From A Vast Machine, Edwards 2010.
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https://www.worldcat.org/title/vast-machine-computer-models-climate-data-and-the-politics-of-global-warming/oclc/813540927

The dawn of digital computing at the IAS

Fi16. 2. Some of the members of the IAS Meteorology Group in 1952. Left to right: J. G
Charney, N. A. Phillips, G. Lewis, N. Gilbarg, G. W. Platzman (behind the camera: ]
Smagorinsky). The IAS Computer is in the background.

From Climbing down Charney’s ladder, Balaji (2021). Picture by Joe Smagorinsky.
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https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0085

Programming the ENIAC
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History of GFDL Computing
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@ John von Neumann
birthed programs in the
1950s for weather
forecasting, and climate
(the “infinite forecast”).

@ From Climbing down
Charney’s ladder, Balaji
(2021). Credit: Youngrak
Cho, NOAA/GFDL.
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Outline

e Computational climate science
@ Model evolution, from the Charney Report to the IPCC
@ The end of Dennard scaling
@ What computers are good at: Machine Learning
@ Learning from models, learning from observations
@ Learning the physics of fine scales

V. Balgji (balaji@princeton.edu) Charney’s Ladder 14 April 2022 17/50



Manabe and Wetherald (1967): 1D model response to CO, doubling
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“Radiative convective equilibrium of the atmosphere with a given distribution of relative
humidity is computed as . Syukuro
Manabe won the Nobel Prize in Physics, 2021.
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Manabe and Bryan (1969)

@ Recognized as a “milestone in
scientific computing”, Nature
(2006).

@ Sector model of 120°

@ 1 atmospheric year coupled to
100 ocean years

@ 1200h for 1 simulated year
(0.02 SYPD) on Univac 1108
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Atmospheric response to doubled CO,
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Fig 5 from Manabe and Wetherald (1975), equilibrium response to doubled CO..
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Atmospheric response to doubled CO,
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Fig 3 from Manabe and Wetherald (1975), equilibrium response to doubled CO,. Spinup
times in modern GCMs can be O(1000 years).
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The structure of a GCM, from Manabe to present day
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From Edwards (2011). O(10X) increase in resolution from Manabe and Bryan to CMIP6.
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https://wires.onlinelibrary.wiley.com/doi/10.1002/wcc.95

The Charney Report (1979)

“Carbon dioxide and climate: A Scientific Assessment.”
@ Precursor to the IPCC Assessment Reports.
@ Based on 5 model runs: 3 from Manabe (GFDL), 2 from Hansen (GISS).

@ Conclusions:

e Direct radiative effects due to doubling of CO: ~ 4 W/m?

o Feedbacks: water vapour (Clausius-Clapeyron), snow-ice albedo feedback.

o Cloud effects: “How important the cloud effects are, is, however, an extremely difficult
question to answer. ,in
which many other feedbacks are involved.”

o “We believe, therefore, that the equilibrium surface warming will be in the range of

, with the most probable value near 3°C.”

Very nice reassessment of the Charney Report: Bony et al (2013).
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Courtesy IPCC ARG6 (2021), Fig 8a from Summary for Policymakers. Based on 114
models from 44 institutions.
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Models add detail

Models grow in resolution and complexity. Courtesy IPCC AR4 report. A typical IPCC
model today has 25-100 km resolution and O(100) variables.
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Attribution: data from alternate Earths
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@ Cloud-aerosol feedbacks induce a weakening of the Indian monsoon Bollasina et al.,
Science 2011.

@ We can now “attribute” individual events.
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Dennard Scaling

TABLE 1
ScaLiNGg ResuLTs FOR CIRCUIT PERFORMANCE

Device or Circuit Parameter Scaling Factor
Device dimension t,x, L, W 1/«
Doping concentration N, : K
Voltage V 1/«
Current 1 1/«
Capacitance ed /¢ 1/x
Delay time/cireuit VC/I 1/«
Power dissipation/circuit VI 1/«
Power density VI/A 1

Table 1 from Dennard (1974). Shows scaling of various quantities when transistor
dimension is reduced by factor x.
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https://ieeexplore.ieee.org/abstract/document/1050511

End of Dennard scaling

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

From 42 Years of Microprocessor Trend Data, courtesy Karl Rupp.

V. Balaji (balaji@princeton.edu)

Charney’s Ladder

14 April 2022

28/50


https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

All algorithms are not created equal

@ Real codes often gated by memory bandwidth.
@ Roofline model:
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Figure courtesy Barba and Yokota SIAM News 2013.
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US Exascale Roadmap
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From DOE Exascale Computing Project, via Travis Linderman’s blog, Oct 2020.
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https://www.innovationdupage.org/blog/exascale-era

EU and Japan moving forward with ARM

From European Exascale Project, via EE News, April 2020.
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https://www.eenewseurope.com/news/european-exascale-project-leverage-arms-zeus-platform/page/0/1

What can we expect at an exaflop?

Will exascale be the rescue? Neumann et al (2019).

sustained performance
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https://royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0148

The carbon cost of climate modeling

O i
O EEERE CMIP6 Summary

CMIP6
Experiments:

Useful ~ Total SY Useful Total Useful  Total
sY Data Data CH Cl
Deaducad

EC-Earth
CNRM-CERFACS
IPSL

cmcc

UKMO

DKRZ
NCC-NORESM2
NERC

MPI

Please take these numbers as first (and
not accurate) approximation

178 . Total Energy cost is calculated
23 multiplying useful SY and the

i proportional average of JPSY for
53, the set of CMIP6 experiment per

institution.
of ® CO2is calculated using factor
conversion and PUE, proposed by

23, carbon footprint group and yet in
discussion.
1,2
6,484 NA 0.297 NA 1.7 NA
640 NA 0.460 NA 55497 NA
24,175 35,000 1.9 NA 968.116 NA

* We have also Useful SY, Useful Data and Useful CH per CMIP6 experiment

From CPMIP Project (Balaji et al, GMD 2017), courtesy Mario Acosta, BSC.
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IS-ENES3 1% General Assembly
March

Toulouse, France

Total Carbon Footprint
Energy (CO2/KWh)
Cost

(Joules)

1.27x10%2 162.6t
3.13E+12 49.5t
6.16E+12 122t
1.61E+12

1.76E+13 572.5t
4.09E+11 24.8t
4.75E+11

217E+12

6.20E+11 37.6t

‘The IS-ENES3 project has received funding from the European Union's Horizon 2020

research and innovation programme under grant agreement No 824084
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https://gmd.copernicus.org/articles/10/19/2017/

The climate Turing test

Figure courtesy the DYAMOND initiative.
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https://www.esiwace.eu/services/dyamond

Deep Learning

Simple Neural Network
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From Edwards (2018), ACM.
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https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext

The ML approach: finding the essence

= o e - y y | [ | 4 J
wa:ﬂu A
From “features” make new instances that capture the essence. Angles and Mallat (2018)
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https://arxiv.org/abs/1805.06621

Coarse-graining using ML

(Courtesy: S-J Lin, NOAA/GFDL). (Courtesy: D. Randall, CSU; CMMAP).

@ From global cloud-resolving models, can we learn the statistical aggregate of small
scales? See Schneider et al 2017, Gentine et al (2018), O’Gorman and Dwyer
(2018), Bolton and Zanna (2019), ...
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001472

Science requires going beyond observations

Global, decadal mean surtace air temperature

Sources of uncertainty in weather and
climate simulation:

80

~
o

2]
o

° or internal variability
@ scenario uncertainty dependent on
policy and human actions.

@ structural/epistemic uncertainty or
imperfect understanding.
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Models must also generate values! From Hawkins and Sutton (2009).
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https://journals.ametsoc.org/doi/abs/10.1175/2009BAMS2607.1

Models or observations?
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Hadley cell strength is likely correct in models and not in “observations”!
From Chemke and Polvani (2019).
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https://www.nature.com/articles/s41561-019-0383-x

Error patterns associated with stationarity assumption

August Daily Max Temperatures
for a point in Oklahoma

HIRES (25km) GCM
1979-2008

HI RES (25km) GCM
2086-2095

approx. +7C
mean warming

T T T
(2.5C histogram bins)

Errors can be traced with warming outside the temperature distribution of the training
period. Caution needed at distribution tails (“extreme events”). Dixon et al (2016).
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https://link.springer.com/content/pdf/10.1007/s10584-016-1598-0.pdf

Where models and data are both weak...

60°E 120°E

1
-20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36 40
Temperature (°C)

Fig 1 from Valdes (2011). GCMs are unable to simulate the Paleocene-Eocene climate of
55 My ago.
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https://www.nature.com/articles/ngeo1200

No separation of "large" and "small" scales

spectral density (m? s72)

wavenumber (rad m™')
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Nastrom and Gage (1985). More model fidelity, more complexity over time in small scales

idea (Jansen and Held 2014) provides an energetically
consistent framework for SGS.

(

). The
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https://www.sciencedirect.com/science/article/pii/S1463500314000766

Replacing a parameterization with DL

R (a) Trained on each climate separately (b) Trained on combined climates
T 15 15

2 Original scheme
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From O’Gorman and Dwyer (2018). Limitations of training on short non-stationary time
series. See also Dixon et al (2016).
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001351
http://dx.doi.org/10.1007/s10584-016-1598-0

Learning sub-gridscale turbulence

ion ). Tra : . 40x40 Grid Point Sub-Regions
W\ ] .'.‘ ‘
1.
-
-

Okm 1920km 3840km

Input Output

Neural network S, = f,(¢, wy), trained to minimize loss L x (S- — 5;).

Fig 1 from Bolton and Zanna (2019).
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https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001472

Coarse-graining without scale separation

eNATLEO

Date: 2008-06-06 04:00 8

Oceanflext

eNATL60 dataset courtesy Julien le Sommer and collaborators. Can we assume a
structure for learning. e.g “GM+E” Bachman 2019. See Sommer et al AGU 2019.
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https://www.sciencedirect.com/science/article/pii/S1463500318301975

Distilling Free-Form Natural Laws from Experimental Data

Physical System Schematic Experimental Data Inferred Laws
= 114.28v* +692.32¢"
= Hamiltonian
I N NN ) X
e ;o ! V- 6.04¢
yem—ial " / Lagrangian
e wm - a—0.008v— 6.02x
T N Equation of motion
- v -142.19x) - 74.65x; + 0.12x, -
) N g V) QT 1.89x,x; — 1.51x," — 0.49v,” +
ST S \ i/ 0.41v,v, - 0.082v,
o P v Lagrangian
T e ’ X
g 1.37'w" + 3.29-cos(6)
\ NMmmme Lagrangian
O\ “ 2714+ 0.0540 - 3.54sin(0)
\ 4 Equation of motion
P W W W W y "2 + (v 2
(m) JWWWV (x=77.72)* + (v — 106.48)
- L Circular manifold

Fig.3.

Summary of laws inferred from experimental data collected from physical systems. Depending on the types of variables provided to the
algorithm, it detects different types of laws. Given solely position information, the algorithm detects position manifolds; given velocities, the
algorithm detects energy laws; given accelerations, t detects equations of motion and sum of forces laws (8, angle; w, angular velocity; a,
angular acceleration).

From Schmidt and Lipson, Science, 2009. My little hommage, Gaitan et al (2016), Can
we obtain viable alternatives to Manning’s equation using genetic programming?
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http://science.sciencemag.org/content/324/5923/81
http://www.sciedupress.com/journal/index.php/air/article/view/9305

Navier-Stokes from data

la. Data collection 1lc. Solve sparse
> 1b. Build nonlinear regression
library ‘of cllata and ’ argmin||OF — w2 + MEllo
derivatives ¢
8
[
< J HE
3 5| = |-3==533 "-gg £ wt:e(w,uﬂj)ﬁ '
= d. Identified dynamics
wy + 0.9931uw, + 0.9910vw,,
= 0.0099w, + 0.0099w,,
Compare to true
_______________________________________ Navier-Stokes (Re = 100)
1
we+ (- V)w= R—Vzu
o wp = O(w,u,v)¢ 2b. Compressed library i
= e | Cwy = CO(w, u, v)E *
5 =
2 Sampling
3 = 2c. Solve compressed
5 I =| C© )
. 0> sparse regression
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From Rudy et al (2017).
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http://advances.sciencemag.org/content/3/4/e1602614

Discovering subgrid momentum closures

A Kinetic energy during 10 year spin-up

0.06

Zanna and Bolton 2020 builds on work
previously shown, and returns a closed-form
expression for subgrid momentum closures:

Sy = (u.V)u—-u.Vu

where relevance vector machine techniques
yield a representation similar in form to

=== 30km resolution 30km + AZ17 3.75km resolution

o — 3km + RVM == 30km + FCNN Anstey and Zanna (201 7)_

T T T T T T T T T 1

0 1 2 3 4 5 6 7 8 9 10

Time (vears)
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https://www.essoar.org/pdfjs/10.1002/essoar.10503535.1

Outline

e Summary: Climbing Down Charney’s Ladder
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Summary: where is climate modeling headed?

@ Models today embody a dizzyingly detailed Earth system. comes from fidelity to
individual processes and feedbacks, fidelity relative to other lines of evidence. But
there is the (see “On exactitude in science”, and Lewis Carroll’s
“Sylvie and Bruno”).

@ Would you trust simulations from an Al?

@ Machine learning and “Al” still is in the positive phase of a (publication

bias, reproducibility crisis) but it isn’t all hype. Dominating the hardware market.
@ ML-derived models must be capable of

@ Imperative to derive of simple models from expensive ones.

° must be factored into model development and
experiment design: carbon-intensive data must be maximally utilized by the
community.

@ Survey paper: Climbing down Charney'’s ladder, Balaji Phil Trans Feb 2021.
° !
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http://science.sciencemag.org/content/359/6377/725
http://science.sciencemag.org/content/359/6377/725
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0085
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