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Predictability (and prediction) of high-impact weather

Intrinsic predictability — predictability under optimal conditions

— Assumes perfect model and tiny initial condition errors

— Lorenz (1969), Lilly (1990): error growth owing non-linearity limit predictability
horizon (upscale growth)

— Judt (2019): error growth (loss of predictability) is flow dependent

— Moist physics is the leading process family in upscale error growth
(Hohenegger and Schar 2007; Baumgart et al. 2019), with limited dependence
on microphysical complexity (Wang et al. 2012)
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Presentation Notes
Predictability versus prediction – we make predictions with model forecasts, the extent to which that prediction is skillful represents predictability. 
Subsequently, predictability is often considered in two frameworks. The first is referred to as intrinsic predictability, which is a consideration of non-linear behavior within the modeled system where small differences in initial conditions can lead to considerable differences in forecast evolution, starting from small scales and growing to larger scales with further forecast integration. In weather prediction, the error growth emerges most rapidly from moist physical processes, where differences in convective evolution can lead to considerable differences in heating that drive tropopause level dynamics that perturb the waveguide and continue to grow upscale toward synoptic and planetary scale wave errors. All prediction systems suffer from intrinsic predictability limits, forecast error growth is dominated by practical limitations. To the extent that we can improve our analysis and forecast system capabilities, we can approach but never reach intrinsic predictability limits. 

Fig. 7 from Baumgart et al. 2019:
Growth rate of enstrophy error associated with the individual processes as indicated by Eq. (10), and (b) further partitioning of the nonconservative contribution into the contributions of the individual parameterization schemes.  

During the first 12 hours, largest growth rate from non-conservative processes, largely from the convection scheme.  Thereafter, error growth is dominated by upper-tropospheric divergence associated with regions of mesoscale ascent perturbing the waveguide. Then, upper tropospheric dynamics dominate through day 5 (non-linear Rossby waves).



Predictability (and prediction) of high-impact weather

Practical predictability — the best we can do with current capability
— Still limited by intrinsic predictability, but also limited by an imperfect model,

modern observing capability, and data assimilation methods

— Melhauser and Zhang (2012): more accurate initial conditions can lead to further
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improvement in prediction skill, warrants further progress in observing capability
and data assimilation
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Presentation Notes
Predictability versus prediction – we make predictions with model forecasts, the extent to which that prediction is skillful represents predictability. 
Subsequently, predictability is often considered in two frameworks. The first is referred to as intrinsic predictability, which is a consideration of non-linear behavior within the modeled system where small differences in initial conditions can lead to considerable differences in forecast evolution, starting from small scales and growing tp larger scales with further forecast integration. In weather prediction, the error growth emerges most rapidly from moist physical processes, where differences in convective evolution can lead to considerable differences in heating that drive tropopause level dynamics that perturb the waveguide and continue to grow upscale toward synoptic and planetary scale wave errors. All prediction systems suffer from intrinsic predictability limits, forecast error growth is dominated by practical limitations. To the extent that we can improve our analysis and forecast system capabilities, we can approach but never reach intrinsic predictability limits. 

Shown – Fig. 6 from Melhauser and Zhang’s 2012 paper on intrinsic and practical predictability – for typical uncertainty in initial conditions, widely varying forecast solutions are possible. The uncertainty associated with initial condition uncertainty can be considered ‘good’ uncertainty, as it can tell us how close we are to regime change, but uncertainty can also emerge from forecasts owing to model errors, which can drive over or under confidence in ensemble forecasts. 



Limitations bridging practical to intrinsic predictability

« Imperfect observations

— Errors in measurements, spatial gaps in observing key features, limited
temporal sampling, measurements are often not of model state
variables

* Imperfect model

— Simplified representation of key processes, unresolved scales, must
balance model complexity with available computational resources

« Imperfect analysis capabilities

— Model errors conflate in data assimilation system, simplified and
imperfect assimilation methods; leads to initial condition errors,
including errors in the estimate of analysis certainty
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The majority of error growth in operational prediction systems owe to factors such as our models are imperfect representations of the true atmosphere, and we have deficiencies in our ability to perfectly initialize models owing to limits in observing and data assimilation systems. Ensemble prediction systems are now common in prediction, including at the convective-scale, to represent the uncertainty in our forecasts owing to intrinsic and practical predictability limits. 



Prediction of high-impact weather

* Predictive skill for convection: storm environment and triggers

— Even coarse models pretty good at forecasting mesoscale storm
environments (well-resolved scale ~ 80 km)

— Best practice among many operational forecasters — ‘forecast funnel’
— Explicit simulations better at representing upscale feedbacks (large

errors)
Spatial scale Parameterized Duration
_ simulations
1000 km Synoptic scale 3 days

100 km Mesoscale Storm environment (varies) 6 hrs

Storm complexes (e.g., MCS) 3 hrs

Convective-scale Thunderstorms 1 hr

10 km

Subgrid hazards (surrogates) 10 minutes
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When it comes to practical high-impact weather prediction, an ingredients-based approach has long been used by operational forecasters. To the extent that forecast models have an accurate representation of the synoptic to mesoscale environment, with appropriate predictions of the mesoscale storm environment and trigger mechanisms for convective storms, then useful forecast guidance can be derived from those forecasts. With explicit representation of convective weather processes, we get predictions of individual thunderstorms, and we can also better represent some of the upscale feedbacks from convection onto the meso and synoptic scale dynamics in the model. Generally, predictability cascades downscale from synoptic to convective scale, and when that is true skillful convective-scale forecasts can be made even without detailed knowledge of small-scale features. 
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Let’s further explore prediction under strong large-scale forcing.  Shown here is simulated reflectivity for a wintertime severe weather event, with strong forcing for ascent along a cold front moving through the southeastern United States. This simulation is conducted with 4-km horizontal grid spacing, with is considered marginal for convection-permitting model simulations. 


2 km grid spacing
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If we do an identical simulation but reduce the horizontal grid spacing to 2-km, there are more details, but the large scale aspects of the system still look the same. 
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Finally, at 1-km grid spacing, again, there are few changes in large-scale aspects of the system. Thus, with strong background forcing, the upscale feedbacks from convection are highly constrained and forecast evolution is not strongly impacted by grid spacing. Similar simulations with varied boundary layer schemes yields similar results under these strongly constrained conditions. 


Composite Reflectivity
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Now let’s consider a weakly constrained background environment. Here we have a forecast at 3-km horizontal grid spacing, which shows a pair of large convective systems. 
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If we repeat this forecast but with 1-km grid spacing, the leading convective system is similar, but there are large differences in the trailing convective system, showing large sensitivity to this change in represented spatial scales. In practice, neither forecast is particularly skillful, with poor placement of the leading convective line, and substantial errors in the convective mode with trailing convection which would have significant impacts on hazard prediction. 


Seasonality of skillful CAM predictions
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+ Ensemble explicit forecasts are more skillful during seasons with strong synoptic forcing, as
predictable features on the mesoscale drive initiation

» Forecast skill degrades with increasing rainfall intensity and during summer where foci for
convective development are less skillfully predicted

Schwartz et al. (2019)
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Time series of ensemble forecast skill for precipitation systems at varying rain rate thresholds, averaged over seasons, for forecasts that were produced by the real-time NCAR ensemble prediction system. Higher values in this verification metric indicate more accurate forecasts. Forecasts during the cooler seasons are more skillful, where well-resolved synoptic dynamics drives the mesoscale to storm-scale predictions, with limited or easily predicted upscale feedback. Summer months feature weaker organization by large-scale processes and this leads to lower predictive skill. 


Why ensembles?

Uncertain convective forecast here
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Of course, not all initiation forecasts are necessarily easy. In this example by Torn et al., there is an uncertain forecast of convective development and intensity in the northeast Texas panhandle. Within the ensemble initial conditions, this ensemble sensitivity analysis shows no statistically significant signal pointing to discriminate whether convection will develop. However, by 6 hours into the forecast, some ensemble members develop nocturnal storms in far West Texas, and those members that do develop storms then have greater mid-tropospheric moisture owing to these convective processes, and that moist pool then advects downstream and then strongly impacts the convective development over the northeast Texas panhandle during the next peak in the diurnal cycle. As shown, these types of conditional predictability can be captured in convection-permitting ensemble forecast systems. 


Incentives toward CAM ensemble R&D

NOAA, through the NGGPS, is moving toward a unified forecast system (UFS) to
simplify the production suite

Opportunities:

* Concentrate efforts in common shared model environment

« Share physics between global and regional configurations, e.g. CCPP
* Eventually, a coupled model framework (e.g., CIME)

Challenges:

« Forklift change of several core forecast system components underway:
dynamic model, (some) physics, and DA system (JEDI)

* Future Rapid Refresh Forecast System (RRFS) is envisioned to include a
convection-permitting (CP) ensemble analysis and forecast system with a
single dynamic core (FV3) and common physics suite

* Current systems based on WRF with GSI| EnKF, or ad hoc conglomerates of
deterministic CP forecasts (HREF)

» Best practice in CAM ensemble design is not yet well defined

NCAR
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Select NCAR contributions to build skillful CAM ensembles

* NCAR ensemble forecast demonstration system (2015-2017)

e Participation in NOAA testbeds with experimental forecast systems
and products (2015-2021)

* Horizontal grid spacing dependence for analyses and forecasts

 EnKF based initial perturbation ensembles with single
dynamic core and physics

 Novel methods for tracing spread-error consistency

* Reducing systematic model errors in continuously cycled regional
DA, including:
— time-averaged initial tendency method to trace model error
— High vs. low resolution ensemble analysis

* Global analysis blending to enable continuous cycling with
simpler workflow

 Post-processing to increase the usability of CAM ensemble

forecasts
NOAA sponsored research key catalyst for much of this work!
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Initial perturbation ensembles - climatology

 Consider impact on ensemble dispersion from different initial
perturbation sources

DART EnKF SREF WRFDA random CV
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* DART EnKF analysis and 3-h lead SPC’s Short-Range Ensemble Forecast (SREF) give pseudo-
flow-dependent perturbations

* Random correlated errors are drawn from WRFDA

* See Schwartz et al. (2020)
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We will consider forecasts from three initial perturbation approaches, two which are flow-dependent perturbations, and one which is not. The flow dependent perturbations include those from an Ensemble Kalman filter data assimilation analysis, perturbations drawn from a 3-hr forecast of the 21 UTC initialized SPC SREF, and perturbations drawn from WRFDA’s random covariance option 3. 
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Pressure (hPa)

Initial perturbation ensembles — vertical structure
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most unique in structure: larger
low-level moisture perturbations,
smallest wind perturbations at jet
level

EnKF perturbations were smaller
amplitude for temperature and
moisture




Initial perturbation ensembles — kinetic energy spectra

Analysis state Solid - total energy 12 hr forecast state
Dashed — perturbation energy
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SREF has greater perturbation variance than EnKF at By 12 hrs, Random CV perturbations grow faster

than SREF and EnKF perts at all scales. However,
the forecasts with only Random CV perturbations are
less skillful.

large scales, likely due to systematic errors from the
different dynamic core and physics perturbations.
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Initial kinetic energy spectra shows that the SREF perturbations are most energetic at large scales, while the EnKF perturbations are most energetic at smaller scales. 12 hours into the forecast, the random perturbations show the most energy across the spectrum. 


Initial perturbation ensembles — skill by perturbation type

(a) 0.25 mm h' (b) 1.0 mmh’
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Initial perturbation ensembles — skill by perturbation type
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Wavelet analysis for spread/skill relationship

For every grid point (i,f):

Cl' i zl:{ ( ﬂ“kwi,j,kz)/ zli Wl':jykz

rain field (binary logarithm)

Figure 3. Logarithmized rain field and corresponding map of central scales from the stage Il reanalysis on 26-04-2005 as used by Ahijevych

etal. (2009) and contained in the Spat ialVx-package. The field has been cut and padded with zeroes to 512 x 512, scales were calculated

using the least asymmetric D4 wavelet, only locations with non-zero rain are shown.

Buschow et al. (2019) Buschow and Friedrichs (2020)

Seeking flow-dependent spread that is similar in spatial scales to the RMS error spatial scales
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Wavelet analysis for spread/skill relationship
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F1G. 4. Joint probability density distributions of the central scales of MSE and spread for the three initial perturbation types (a) ENS-RAND, (b)
ENS-SREF, and (¢) ENS-DART.

Generally poor correlations between initial perturbations and errors for all
types — errors dominated by systematic errors not captured in perturbations.
EnKF has small range of initial central scale spread.

NCAR

UCAR UFS webinar




Wavelet analysis for spread/skill relationship

2-m temperature

All member spread
power spectra

Mean central scale
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Wavelet analysis for spread/skill consistency

Ensemble struggles:

* Diurnal variability

» Under-dispersive
at larger scales,
over-dispersive at
smaller scales

Skill

Forecast lead time (h)

Spread

Positives:

EnKF perturbations
show consistent error
growth with

. increasing lead time

Forecast lead time (h)

Consistency
ratio

Forecast lead time (h)

Central scale (km) Central scale (km) Central scale (km)
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High resolution ensemble analysis

« Explore whether finer horizontal grid spacing for the ensemble
analysis leads to more sKkillful subsequent forecasts
— Explicit representation of convection
— Eliminate downscale errors

« Massive change in computational demands:
— 3-km 80-member ensemble analysis over full CONUS
— Beyond available NCAR resources for real-time full experiment
— Hourly cycling, compare 15- and 3-km grid spacing analyses to initialize
forecasts

« Additional test on impact of radar reflectivity assimilation
— Little value beyond the first few hours, not shown here

Schwartz et al. (2020)
NCAR

UCAR ‘ UFS webinar



Amplitude response

High resolution ensemble analysis
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Test blending with GEFS
at large scales for initial
conditions

Speculation that analysis
quality degrades within
regional model with
continuous cycling




High-resolution ensemble analysis and blending

(a) 90.0th percentile (b) 95.0th percentile (c) 97.5th percentile
i © e 1.0 4oy R -
10 B T ctscto ekl I bbbty

0.9 L

0.9 - -
FSS — larger values @ 09 - -

indicate greater forecast 0.8 7 y
skill 0.8 1 r

0.8 - - 0.7 4 L
GEFS — more skillful at 07 4 L
|ong |ead (> 24 hrs) T T T T T T T T T T T T 0.6 T T T T T T

6 12 18 24 30 36 6 12 18 24 30 36 6 12 18 24 30 36
15-km EnKF — more d) 99.0th til 99.5th il ) 99.9th til
skilful atshortlead (< 18 e e (2) 99,500 percentle 0.9t percentle
hrs) LR a e e 080 quizzee zin: : -

e errresarennnne N U 0.90 Jertunsannssrnnnnrnns e b -

0.9 1 L 0.70 1 2
3-km EnKF — more 0.80 1 E 060 4 ]
skillful than 15-km « 08 1 L '
through first 12 hours 2 070 1 F 050 4 -

0.7 1 r 0.60 A - 0.40 - L
Blended — combine 05 ]
large-scale GEFS and 3- ' 0.50 030 1 -
km, improved short and 05 P 0.40 S Ananns e s 0.20 Bt Asmans e aamat
long lead skill 6 12 18 24 30 36 6 12 18 24 30 36 6 12 18 24 30 36

Forecast hour Forecast hour Forecast hour

3-km EnKF ICs GEFS ICs Statistical significance markers
3-km EnKF ICs (m) vs. 15-km EnKF ICs (m)

15-km EnKF ICs Blended 3-km ICs 3-km EnKF ICs (m) vs. GEFS ICs (m)
15-km EnKF ICs ()  vs. GEFS ICs (m)
Blended 3-km ICs (m) vs. 3-km EnKF ICs (m)
Blended 3-km ICs (m) vs. GEFS ICs (m)

Schwartz et al. (2020) Added value from convection-permitting analysis extends ~ 12 hours into the forecast
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Let’s start by establishing that there is value in higher resolution in ensemble analysis systems, shown here by comparing forecast skill time series from 15-km analyses, shown by the blue trace for progressively heavier convective rain rates from left to right. 36 hour forecasts from a 3-km explicit analysis is shown in the black and red traces, and as shown in this study by Schwartz et al. forecasts are improved by a 3-km analysis during about the first 12 hours of the forecast. 


Partial versus Continuous Cycling

Continuous cycling Partial cycling (current HRRR)
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Partial versus Continuous Cycling

» Hourly cycling, springtime CONUS domain

« Partial cycling — external model conditions have very little bias and
smaller RMS error

« After 12-18 hours of cycling, little apparent difference in bias and RMS
error near observation sites
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Partial versus Continuous Cycling

» Hourly cycling, springtime CONUS domain

« Partial cycling — external model conditions have very little bias and
smaller RMS error

« After 12-18 hours of cycling, little apparent difference in bias and RMS
error near observation sites
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Partial versus Continuous Cycling

Continous cycling forecast Area under the ROC curve for Reliability diagram for
skill degrades beyond 24 precipitation at 95th percentile precipitation at 95th percentile
hours 1.02 1 - -
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Recommendation:
Employ blending in place
of partial cycling for
comparable results but
simplified workflow
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Making the most of what we have — Al post-processing
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Presenter
Presentation Notes
If we look at the storm surrogate forecast, in panel a for a small neighborhood smoothing, and a wider neighborhood smoothing in upper right, the surrogate probabilities shown as numbers on a grid are relatively modest and displaced from where observed reports of severe weather occurred, which was much further south. Yet, there is considerable information available within the model forecast and by considering other climatological information, a skillful forecast can still be made. Here, a neural network is applied which leads to a substantial shift in the probabilities for where severe storm reports will occur, better aligning with the observed storm reports for this event. This type of improvement is found to occur broadly, and can lead to a marked improvement in the skill of hazard forecasts, as shown here where storm surrogate forecast skill is shown in the blue trace, with the neural network improved forecasts shown in Orange, where there are marked gains early in the forecast as the model spins up, and strong gains are maintained throughout the forecast with around 50% improvement in hazard forecast skill. 


Making the most of what we have — Al post-processing

(a) 40 km (b) 120 km
1.0 v 1.0 N
NNPF (BSS: 0.11; ROCA: 0.96) NNPF (BSS: 0.25 ; ROCA: 0.95) &
0.91 SSPF (BSS: 0.07; ROCA: 0.85) 0.91SSPF (BSS: 0.14; ROCA: 0.84) |
0.8 ' 0.8 -
> -
§07 / §o7
3 / 3
gos- Pd g6
o (0]
205 NE 05 3
8 Bl ®
® 0.4 © 04 /
e 2
B 80 3
80'3 8 /
0.2 0.21
0.1 0.11
o glimo| o dimo
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 1.0
Forecast Probability Forecast Probability

Neural network probability forecast
Storm surrogate probability forecast

NCAR

UCAR ‘ UFS webinar



Making the most of what we have

— Al post-processing

Building an ML-based system to objectively identify convective mode in CAM output

Probability of Supercell

Probability of QLCS

Probability of Dlsorganlzed
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Forecast initialized 00 UTC 24 May 2016, valid 12 UTC 24 May 2016 — 12 UTC 25 May 2016

Predictions using CNNnew (including S2 into QLCS category) —

higher probabilities indicated by darker shading

New research activities led by Ryan Sobash with HWT (and soon JTTI) support
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Looking ahead: Tendency diagnostics for *conditional* model error

Diagnosing synoptic progressiveness forecast errors within the UFS MRWA

May Wong, Craig Schwartz, and Glen Romine of NCAR, Alicia Bentley and Geoffrey Manikin NOAA/EMC

b|
g \ N
o . \“. S
a Y |
4 "\
GFS.v15 - i, J oae— | GFS.V16 A

500-hPa geopotential height (dam; contours) and absolute vorticity (x 10-° s, fill) for a) GFS.v15 and b)
GFS.v16 initialized at 1200 UTC 08 April 2020 and valid 1200 UTC 12 April 2020

* Progressiveness may be associated with re-connecting and detaching cutoff lows
« We will develop object-based diagnostics to investigate physics behavior of cutoffs
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Summary — moving toward intrinsic predictability

« Improving model skill is a faster pathway to better initial
conditions and subsequently better forecasts
— Higher resolution (explicit) background analysis
— Else, address regional model shortcomings with blended analysis

« Reliable forecasts are equally challenging
— Dependence on the characteristics of initial ensemble perturbations

« Improved post-processing (Al) can lead to better skill and
reliability

* In the works:
— Moving toward understanding conditional forecast error diagnosis
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Presenter
Presentation Notes
In summary, we have the ability now to make skillful forecasts of high-impact weather on the mesoscale. Progress has been slower on the storm-scale, where substantial computational resources are needed and forecast benefit appears to be relatively short-lived. Efforts to apply machine learning on convective-scale prediction are likely to provide considerable added value, but focused research on convective-scale data assimilation and understanding model errors in convective-scale prediction are certainly warranted to provide better guidance on the warning time-scale. 
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