

Unified Forecast System SIP: Research and Operations May 14, 2019

UFS-SC Co-chairs

- Recent Focus of UFS-SC (Brief)
- Research to Operations
- Relations to SIP Meeting

Unified Forecast System – Steering Committee

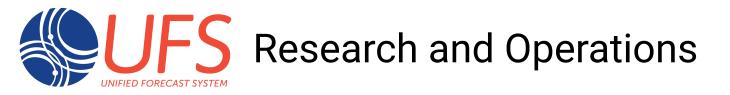
- Governance Strategy
 - Facilitates community model research, development, and applications (Includes policy, practice, tools, ...)
 - Focuses on near-term projects that have long-term consequences
 - Improves scientific integrity at organizational level
 - Leads towards unified forecast suite with coupled predictive models (Simplification)
 - Describe the end-to-end system
- Meeting ~ weekly since March 2, 2018.
 - Presentations from invited working groups on priority items defined by SIP plan and Steering Committee members
 - Meet Friday at 11 Eastern
 - All presentation materials and minutes are posted at UFS SC working site #COG (<u>link</u>)

UFS: Started from a set of important foundational decisions

- Dycore: Selection of the FV3 dynamical core for the GFS (Global Forecast System)
- Systems architecture for the coupled model
- Coupling infrastructure
- Strategic Implementation Plan (SIP)
- NCAR-NOAA Memorandum of Agreement

- EPIC Opportunity: Success of SIP and UFS is essential for EPIC.
- SIP and UFS are part of the foundation for EPIC

-S What we have been doing

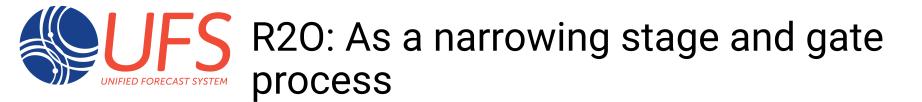

- Organizing Research to Operations Transition
- <u>CAMDesign</u>
- Communications
 - UFSCommunity Portal
 - UFS Overview Slide Deck

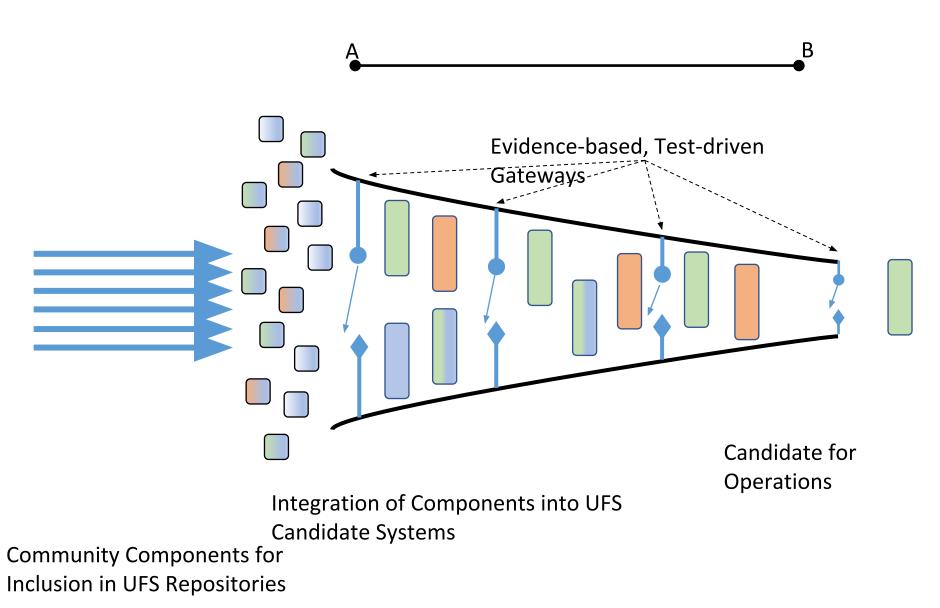

What we have been doing

- <u>Repository Plan</u>
- Graduate Student Test
- Focus Groups / Tiger Teams
 - Portability
 - Hierarchical Testing
 - Workflow
 - Data Assimilation Prototype:
 - NUOPC JEDI Interoperability

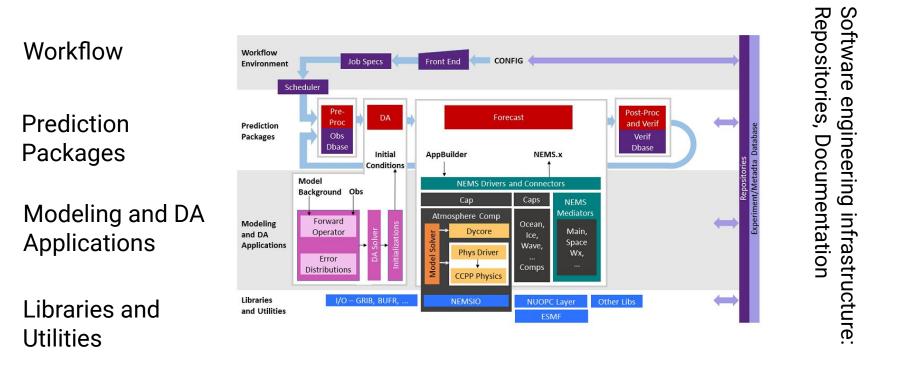
- Describe and analyze the R2O process in order to improve it
 - Transitions between research and operations are widely considered what we need to improve.
- We need to know what we are doing to be able to target resources for improvement.
 - Describe the end-to-end process
 - What are the key functions?
 - What are the barriers?
 - How does it all fit together?
- Improved O2R is interwoven with R2O

The goal of the UFS R2O transition is to move complex scientific software from a loosely managed research community to rigorously defined production software. The production software provides science-evaluated environmental forecasts on a repeating schedule. The R2O transition process requires, therefore, evaluation of software quality, computational performance, and scientific quality.


Compared with our R2O experience the UFS


- Is far more complex software
- Has a strong relationship with communities
 - Developers
 - End-users
- Has distributed, heterogeneous computational and information systems
- Even if what we have been doing was optimal, it would have to evolve, adapt, and extend to the UFS.
 - EPIC is an opportunity to do this better.




R20: Process (Our behavior)

- Building usable complex information systems and software requires:
 - Iterative design and testing
 - Iterations with developers, scientific experts, and application specialists (teaming and re-teaming)
 - Communications
 - Continuity
 - Definition (Developing common language)
 - Incremental Planning
 - Strategic goals
 - Integration into end-to-end systems to address application goals
 - Objective testing, verification, and validation at all steps

The Point: Complex system with differentiated functions. The functions are required to combine into end-to-end application systems. Requires data communication at the interfaces and communication among humans.

What we have been doing

- What are the applications?
 - What are the forecast priorities?

UFS Applications

UFS is configurable into multiple applications, each of which will have:

- A forecast target (numerical guidance for forecast products)
- Its own "umbrella" repository with links to shared component and infrastructure code
- Lead(s), development plan, and test plan

Parts of a UFS Application

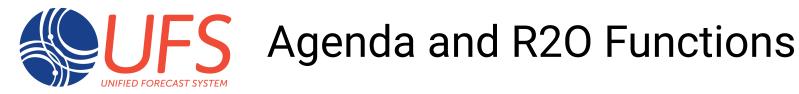
workflow	computing and collaboration environment			
pre- processing	data assimilation model forecast processing and verification			
Pre-processing and data • Stages inputs, performs observation processing, and prepares an analysis				
Model forecast	Integrates the model or ensemble of models forward			
Post-processing and verification	 Assesses skill and diagnoses deficiencies in the model by comparing to observations 			
Workflow	Executes a specified sequence of jobs			
Computing and collaboration environment	 May be different for research (experiment focus) and operations (forecast focus) Provides actual or virtualized hardware, databases, and support 			

UFS Applications

UFS applications include:

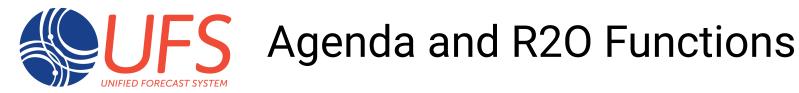
- Medium-Range Weather (Weather) Atmospheric behavior out to about two weeks
- Subseasonal-to-Seasonal (S2S) Atmospheric and ocean behavior from about two weeks to about one year
- Hurricane Hurricane track, intensity, and related effects out to about one week
- Short-Range Weather/Convection Allowing Atmospheric behavior from less than an hour to several days
- Space Weather Upper atmosphere geophysical activity and solar behavior out to about one month
- Marine and Cryosphere Ocean and ice behavior out to about ten days
- Coastal Storm surge and other coastal phenomena out to about one week
- Air Quality Aerosol and atmospheric composition out to several days

- Management and decision making
- Workflow
- Code Management
- Developer and User Support (Community Support)
- System Integration
- Testing, Verification, and Validation


R202R: Functions and Analysis

Function	UFS-SC Analysis	Status Evaluation
Management and Decision Making	yes	some existing capacity
Workflow	yes	some existing capacity
Code Management	yes	some existing capacity
System Integration	no	major gap
Developer and User Support	no	major gap
Testing, Verification, and Validation	yes	some existing capacity

Computational	no	some existing capacity
Resources		


- Management and decision making
- Workflow
- Code Management
- Developer and User Support (Community Support)
- System Integration
- Testing, Verification, and Validation

Wednesday afternoon:

Application Research and Development Goals, Priorities

- The forecast goals and science priorities define the testing, verification, and validation, and this anchors the end-to-end system.
- They also anchor the O2R priorities for the strategic research program.

Tuesday afternoon:

Model Evaluation Group evaluation is to inform the development of

• The forecast goals and science priorities of the Medium-range Weather application.

Agenda and R20 Functions

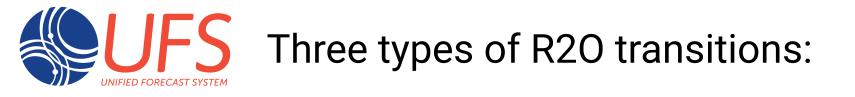
Thursday Morning:

- Developing test plan for end-to-end GFSv16 system and downstream applications
 - Testing, Verification and Validation: Hierarchical Testing and Design, Workflow, DA Prototype
- Using the GFSv15 release to advance community support capacity
 - Developer and User Support: Repository Plan, Graduate Student Test, Portability, Workflow
- Develop plans to replace current suite of limited area models with FV3-SAR solutions
 - CAMDesign: Leads towards unified forecast suite with coupled predictive models (simplification)

JFS Backup & Informational Slides

R2O: Maturity and Readiness Level

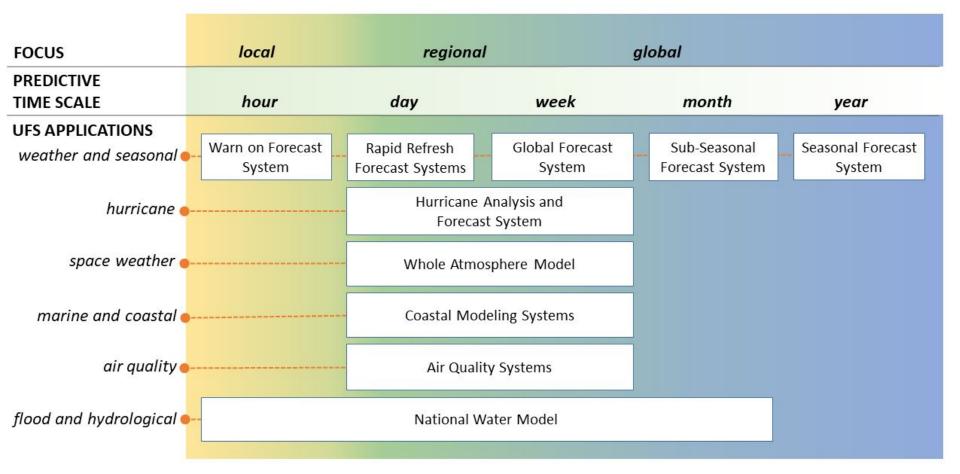
UFS: Notional Categories of Maturity


- Step 1: Ideation
- Step 2: Preliminary Experimentation
- Step 3: Pre-operational Experimentation
- Step 4: Integration and Testing in Prediction Packages

NOAA Readiness Level (RL)

- RL 1 and 2
- RL 3 and 4

• RL 5 – 9


(Iterative processes)

- System Level Transition
 - Changing the dynamical core and physics of the GFS GFSv15
- Application Level Transition
 - Physics upgrade for GFS GFSv15 --> GFSv16
- Incremental Level Transition
 - Parameterization level calibration (Improve cloud radiation interaction, super saturation in DA)

Scope of UFS

UFS applications span predictive timescales (less than an hour to more than a year) and focus on multiple spatial scales (local to global).

- NCAR, NWS, and OAR Memorandum of Agreement focuses on synergistic development and use of infrastructure
- Builds on existing multi-agency community-developed infrastructure (NASA, Navy, NOAA, NSF, DOE...)
- UFS Working Groups are already engaged in seven work areas specified by the MOA
- Finalized January, 2019 (<u>link</u>)

NCAR-NOAA Infrastructure MOA Work Areas

1. Coupling components

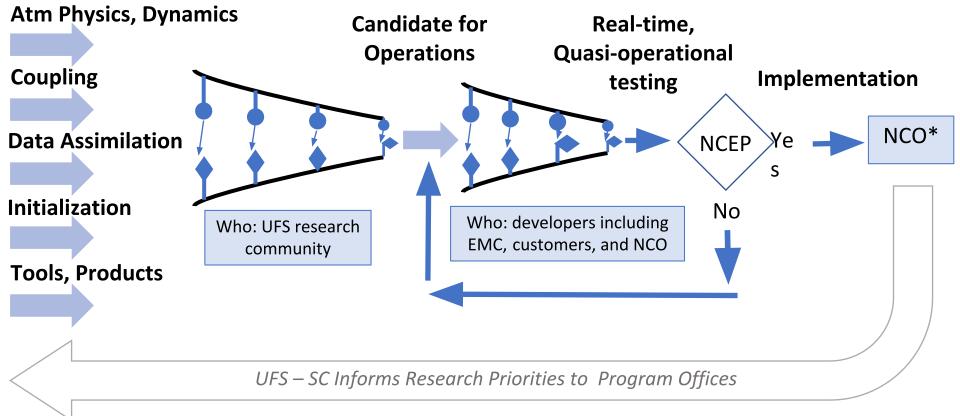
New ESMF/NUOPC mediator (CMEPS/NEMS)

2. Interoperable atmospheric physics CCPP & CPF frameworks

3. Community-friendly workflow CIME - CROW unification, CIME Case Control System

4. Hierarchical model development capabilities Extensions of CIME data models, unit, and system testing

5. Forecast Verification: Comparison to Observations Extension of MET+


6. Software Repository Management NCAR manage_externals tool

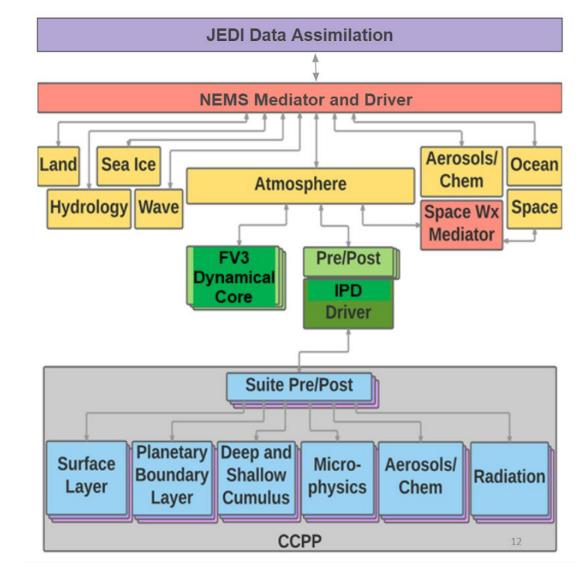
7. User / Developer Support DTC and CESM Capabilities

R202R: Improving by Doing

- Use FV3-GFS release to increase community engagement, advance UFS plans (e.g. graduate student test), develop linkages across applications
- Use the two planned cycles of physics development and ongoing coupled system development to define and improve the R2O process

* Plus any NOAA entity with responsibility for the implementation (e.g. GSD, MDL, NOS etc.)

Shared Community Infrastructure


Infrastructure for data assimilation: Joint Effort for Data assimilation Integration (**JEDI**)

Infrastructure for coupling models together:

- NOAA Environmental Modeling System (NEMS) coupler
- based on the Earth System Modeling Framework (ESMF)
- using National Unified Operational Prediction Capability (NUOPC) conventions

Infrastructure for interoperable physics:

 Common Community Physics Package (CCPP) framework

